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Abstract
In this work we study the absorbing state phase transition of a recently
introduced model for interacting particles with neighbourhood-dependent
reproduction rates. The novelty of the transition is that as soon as the active
phase is reached by increasing a control parameter a periodically arranged
structure of particle clusters appears. A numerical study in one and two
dimensions shows that the system falls into the directed percolation universality
class.

1. Introduction

The study of continuous transitions into absorbing states has been of interest for decades [1–3].
Since the dynamics is trapped in the absorbing configuration and therefore it is irreversible, they
constitute an interesting case of nonequilibrium phase transitions. Some examples showing
such transitions include the contact process, epidemic spreading, directed percolation (DP)
and reaction–diffusion systems. In general, the phase diagram of these systems involves two
different phases: an absorbing one, in which the density field vanishes, and an active phase,
where the expectation value of the density is different from zero. A high degree of universality
has been found, and many of the known examples fall into the DP universality class [1–3].

Recently, in the context of population dynamics with possible applications to plankton
populations or bacterial growth, a model where particles interact with other ones located
within a finite distance was introduced [4]. The particles form clusters that are periodically
arranged in the system for large values of a control parameter. When this parameter decreases
a transition into an absorbing phase, with no particles alive, occurs. The novel feature is that
the transition to the absorbing phase is directly performed from an active phase which shows a
spatially periodic structure. According to the DP conjecture [5–7], all of the transitions into a
unique absorbing phase, provided that interactions are short ranged, and that extra symmetries,
memory effects and quenched disorder are absent, belong to the DP universality class. Since our
model presents a transition characterized by the spatially periodic structure of the active phase,
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which means that additional symmetries are broken, it is a priori possible that the system falls
into a new, or at least, different universality class from DP.

In this paper we study the nature of this absorbing state phase transition in one and two
dimensions. First we show the periodic spatial pattern that is formed in the system in the
active phase growing from a localized seed. The structure function is then calculated showing
the existence of a peak at nonzero wavenumber (signature of an structured phase) even for
values of the control parameter very close to the critical one. The exponents characterizing the
phase transition are then studied via spreading simulations from a particle seed. We will show
that they are in complete agreement with the DP exponents, so that our system falls into the
directed percolation universality class. We will argue that the insensitivity of the exponents of
the absorbing transition to the periodic nature of the active phase may be due to the lack of a
true long-range order of the periodic phase in the thermodynamic limit, so that we do not have
actually an infinite number of active phases.

2. Model and spatial structures

The interacting particle model is introduced in [4] and further studied in [8–10]. It considers
initially N0 particles in the interval [0, L] for the 1D case, and in the square [0, L] × [0, L] for
2D, with periodic boundary conditions. The particles are performing independent Brownian
motions, leading to diffusion with diffusivity D. At every time step (time is discretized) a
particle (say particle j ) is chosen. It dies, disappearing from the system, with rate β j , or
reproduces, i.e. replicates itself, with rate λ j . In this last case the newborn is placed at the same
location as the parent particle. The death rate is taken to be constant, β0, and the birth rate, λ j ,
depends on the number of particles N j

R within a distance R from its position, i.e.

λ j = max(0, λ0 − N j
R/Ns), (1)

where the maximum condition is to assure the positivity of the rate, and λ0, and Ns are
constants, identical for all the particles. As shown in previous works, the control parameter
of the system is μ = λ0 −β0. We normalize time so that λ0 +β0 = 1 and then giving the value
of μ fixes both λ0 and β0. It is clear that such interacting particle systems, where birth rates
decrease in spatial areas of high particle density, has direct application in biological population
dynamics [4, 8, 10] as models of competition for resources. More general particle models
developed in the same spirit can be found in [11].

For an appropriate election of the parameters R and D (essentially a small D value is
enough as shown in [4]), which we fix in all our calculations to be R = 0.1 and D = 10−5,
periodic spatial structures emerge in the system when we are in the active phase above a critical
point μc. If μ < μc particles become extinct. In figure 1 we show how these structures
emerge from a localized initial pocket of particles. The plot is for one (left) and two (right)
dimensions and μ = 0.7 (the critical values of μ are later on computed to be μ1D

c = 0.341(2)

and μ2D
c = 0.308(1) in one and two dimensions, respectively). In the one-dimensional case

we plot the x coordinate of the particles in the horizontal axis, and the time variable on the
vertical one. One can see that the number of particles increases and they begin to organize in
periodically arranged clusters. At longer times the particle number stabilizes and a fluctuating
periodic arrangement of particle clusters is established as the asymptotic state.

The system goes continuously, by increasing the value of the control parameter μ, from
the absorbing configuration (no particles) to the active phase as can be seen in figure 2. There
we plot the average stationary density, ρst, as a function of μ for one-dimensional systems
with different sizes. This figure suggests a transition, when the system size goes to infinity, at
around μ = 0.342 (in good agreement with the more accurate values obtained below from seed
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Figure 1. Left: 1D system. The spatial positions of the particles are on the x axis and time is on
the y axis. A periodic array of fluctuating clusters is reached at long times. Right: 2D system.
Spatial distribution of particles at time t = 200. The region with clusters expands and at long times
the whole system is covered with a periodic arrangement (with hexagonal symmetry) of fluctuating
clusters. In the two plots μ = 0.7 (deep into the active phase), D = 10−5, Ns = 50 and R = 0.1.
Both structures emerge from a seed of 500 particles localized in the centre of the system.
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Figure 2. Average stationary density of particles for values of μ close to the critical value in the 1D
system. The different system sizes considered are detailed in the legend box. Other parameters as
in figure 1.

numerical experiments). The steady density is computed averaging over time in the steady state
and also over many different realizations the number of particles and dividing by system size.
The average over the realizations considers only those that do not enter into the absorbing phase.
In two-dimensional systems a finite-size analysis of long-time steady states is computationally
expensive and will not be attempted here. However, our following calculations of the exponents
by seed spreading methods seem to confirm that we have also a continuum phase transition in
two dimensions.
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Figure 3. Structure factors for different values of the control parameter. For clarity, the large peak
at k = 0 has been suppressed (i.e. we really plot I (k) − I (0)δk,0). The left panel is for the 1D
system with size L = 5 and, from top to bottom, μ = 0.38, 0.36, 0.3436, 0.3416. The right panel
corresponds to the 2D system so that the structure factor is circularly averaged. From top to bottom
μ = 0.36, 0.34, 0.33, 0.32. The rest of the parameters for both panels are the same as in figure 1.

A proper measure of the periodic spatial structure is given by the structure factor, I (k) ≡
| ∑N(t)

j=1 eik·x j |2, where N(t) is the number of particles in the system at time t and {x j} are their
positions. From the numerical computation of I (k) we check whether the spatially structured
character of the active phase is maintained as we approach from above the critical point, μc.
In figure 3 we plot the structure factor in the one-dimensional case (left) for different values
of μ (close to μc). The same quantity, but circularly averaged for the two-dimensional case, is
shown to the right. In the 1D case the values of the control parameter are μ = 0.3416, 0.3436,
0.36, 0.38, and in 2D, μ = 0.32, 0.33, 0.34, 0.36. The largest peak of I (k) is obtained at
k = 0, and provides the square of total number of particles in the system. In the plots, in order
to concentrate on the secondary peak which gives information about the spatial structure [12],
the value of I (0) is set to zero. On the other side, it is important to realize that the position
of the secondary peak in k = kM �= 0 only slightly changes by increasing μ, which shows
that the pattern structure is reached just when the active phase is developed, i.e. just above
μc. Summing up, the fact that the secondary peak is different from zero and that the value of
kM remains almost invariant when different values of μ are considered, support the fact that
the system is spatially structured even very close to the absorbing critical point, for both one
and two dimensions. Moreover, the location of the peak gives information about the periodic
structure by signalling the number of clusters n in the system (through kM = 2πn/L) [8, 10].

3. Critical behaviour

By now we have shown that, at least in 1D, the transition from absorbing to active phase is
continuous. Moreover the analysis with the structure factors has revealed that this transition
occurs simultaneously with the appearance of a spatial pattern, i.e., the active phase always
present a periodic structure. We now proceed to study the critical properties of this peculiar
transition. The first step is to localize with a good confidence the critical value of the control
parameter, μc, in both one and two dimensions. This is done by evolving in time a small seed of
particles and monitoring the total number of particles, N(t), averaged over all the runs [13, 14].
At the critical point it must scale asymptotically as a power law, N(t) ∝ tη , showing some
curvature at sub- and super-critical values, which helps us to identify the critical point. This is
shown in figure 4. We obtain μc = 0.341(2) in 1D, and μc = 0.308(1) in 2D.
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Figure 4. Time evolution of the total number of particles in the system. Left is for 1D and, from
top to bottom, μ = 0.3440, 0.3424, 0.3412, 0.3404, 0.30. Right is for 2D and, from top to bottom,
μ = 0.32, 0.3084, 0.3081, 0.3080, 0.3040. Other parameters as in figure 1. In both plots we
average a number of realizations between 1200 and 2000. The critical value of μ, μc, is the one
corresponding to the line in which upwards or downwards curvature is absent.
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Figure 5. Number of particles versus time right at the critical point μ = μc (averaged between
1200 and 2000 runs). Left is for 1D and right for 2D. Other parameters as in figure 1. The lines give
the best fit to the plots, with slopes 0.30 (1D) and 0.25 (2D).

Besides N(t), the total number of particles, we compute the survival probability, Ps(t),
which is the probability that the system remains in the active phase at time t , and the mean
square radius, R2(t), defined as the mean square distance of all the particles with respect to
the centre of mass of the system (remember that as the initial seed of particles grow many
clusters form), and also averaged over all the runs. At the critical point there is no characteristic
timescale and these magnitudes scale asymptotically as

Ps(t) ∝ t−δ,

R2(t) ∝ t z .
(2)

In figures 5, 6 and 7 we plot, respectively, N(t), Ps and R2 versus time at the critical point for
one and two dimensions. The slopes of the linear fits shown are, in 1D: η = 0.30, δ = 0.17
and z = 1.09; in 2D: η = 0.250, δ = 0.43 and z = 0.72. In all the plots the system size is
chosen to be very large, L = 100, in order to avoid finite-size effects, and the total number
of runs is between 1200 and 2000. These values are in good agreement with the DP critical
exponents [1–3] so that one can conclude that the model studied is in the DP universality class.
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Figure 6. Survival probability versus time right at the critical point μ = μc. Left is for 1D and right
for 2D. Other parameters as in figure 1. The lines give the best fit to the plots, with slopes −0.17
(1D) and −0.43 (2D).
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Figure 7. Mean square radius versus time right at the critical point μ = μc. Left is for 1D and right
for 2D. Other parameters as in figure 1. The lines give the best fit to the plots, with slopes 1.09 (1D)
and 0.72 (2D).

4. Discussion and summary

Despite the nonstandard features of the active phase in the absorbing phase transition
considered here, our numerical results identify it as pertaining to the DP universality class.
There is a naive analytical argument supporting this finding: an approximate Langevin equation
for a stochastic quantity �(x, t) that under averaging gives the expected value of the local
particle density was derived in [4] by using Fock space techniques. It has the form

∂t�(x, t) = D∇2�(x, t) + μ�(x, t) − 1

Ns
�(x, t)

∫

|x−r|<R
dr �(r, t) + η(x, t), (3)

with η(x, t) being a noise term with zero mean and very complex correlations (see [4]), which
depend on �(x, t) itself, so that the noise is multiplicative, and including terms of both types,
spatially local and nonlocal. The important point, however, is that these correlations have a
finite range (of order R). Although nonlocal, the interactions in equation (3) are also of finite
range R. Therefore if we scale all lengths by the system size L and take the thermodynamic
limit L → ∞ to study critical properties, the relative interaction range R/L tends to zero and,
after appropriate scaling of the interaction parameters, we recover a local partial differential
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Figure 8. Ordering parameter φ (see the definition in the text) divided by the system size L versus
the control parameter μ in the 1D case. The different values of L used in the plot are written down
in the legend. Other parameters as in figure 1. The good collapse of the data is consistent with the
absence of long-range periodic order.

equation that is nothing but the Reggeon field theory, i.e., the continuum description of the DP
universality class. The idea is that nonlocal but finite-range interaction becomes local under
the renormalization group microscope. This argument will fail, and corrections to the DP
exponents may appear, if there are additional conserved quantities coupled to the dynamics.
Since the deterministic part of equation (3) has periodic solutions [4, 8, 10], one such conserved
quantity could be the phase of the periodic pattern, if the noise term in (3) turns out to be unable
to restore the translational symmetry broken by the deterministic pattern forming process. Thus,
a possible explanation of the persistence of DP exponents here is that the active phase does not
really break translational symmetry in the thermodynamic limit, and thus we do not have an
infinity of active phases but a single one with only short-range order.

A preliminary check of these ideas has been performed in one dimension (in
nonequilibrium models, symmetry breaking can occur even in low dimensions [12]). To analyse
the periodic ordering we define an order parameter φ as the value of the secondary peak of
the structure factor (also averaged over time and realizations), i.e., φ = 〈I (kM )〉. Note that if
particles are distributed at random then 〈I (k �= 0)〉 = 〈N〉 and typically 〈N〉 ∝ Ld , whereas for
particles arranged with long-range periodic order at wavenumber kM we have 〈I (kM )〉 ∝ L2D.
Thus, the scaling with system size of the order parameter φ contains the needed information
about the presence or absence of long-range order and thus of translational symmetry breaking.

In figure 8 we show φ/L versus μ for different system sizes in the 1D case. The good
collapse of the data for the different sizes is consistent with the interpretation that long-range
periodic order is suppressed in the thermodynamic limit (large L) at least in one dimension. If
this preliminary result is maintained for larger sizes and for two-dimensional systems, then the
DP exponents found here can be understood as a consequence of having short-range interactions
and a single active phase, not an infinity of them. Further numerical work along these lines will
be the subject of future research.

In summary, we have shown that a system of Brownian particles competing for the
resources in their neighbourhood presents a continuous absorbing phase transition. The
active phase is made of particle clusters periodically arranged but, despite this peculiarity, the
absorbing transition falls into the DP universality class in both one and two dimensions.
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